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1. INTRODUCTION

For some time now, the modulus of smoothness has been used by
approximation theorists as a neat measure of the structural properties of a
function. For example, most theoretical estimates for the order of
approximation of functions by say, polynomials or splines, are now given
in terms of such a modulus.

Such theoretically elegant results are, however, not always easy to use in
practice. Very often the potential user will have a particular function, and
will require a quantitative estimate of its order of approximation. Such an
estimate depends in turn on an accurate calculation of the order of the
modulus of smoothness of the given function. This is often a difficult task,
even in the relatively simple case of a first order modulus of a univariate
function under the uniform norm. For high order moduli of multivariate
functions with respect to say, Lq-norms, such a task becomes virtually
impossible. The difficulties are compounded by the fact that, although we
can often get some sort of estimate for the order of the modulus, it is
usually very difficult to make sure that our estimate is sharp.

In this paper we shall introduce certain classes of multivariate functions
which are characterised by the singularities of their elements. For functions
from these classes we shall obtain sharp estimates of the modulus of
smoothness of any order with respect to both the L q- and uniform norms.
In doing so we make the theoretical approximation theory for these classes
of functions more accessible to the practical user.

The classes of functions which we will be able to handle will include
those which contain a finite number of algebraic or logarithmic
singularities. For example, let Q s 1R" be a bounded domain with a suitably
smooth boundary. Suppose Q contains the zero vector, let (X> 0, 1:::;;; q:::;;; 00,

and define f: Q -+ C by
f(t) = Itl~-lIlq,
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where ,./ denotes the usual Euclidean norm on IRn
• Then in Theorem 5 of

Section 3, we shall prove that

kE N, k> IX,

kE N, k < IX,
(1.1 )

where wk(J, r)q denotes the kth order modulus of smoothness of f in
Lq(Q), with parameter r > O.

Theorem 5 also contains much more general results than those given in
this example. In fact estimate (1.1) can still be obtained when f contains a
number of algebraic or logarithmic singularities, provided the dominant
singularity in f is IW- n/q•

The relevance of results like (1.1) becomes clearer when we look at some
recent developments in approximation theory. If Q £: IR n is a cube with side
length r then Brudnyi [5] has shown that for each fELq(Q), 1~q~ 00,

there exists a multivariate polynomial p of total degree ~k - 1 such that

(1.2)

where the norm and the modulus are evaluated in Lq(Q), and C depends
only on k and n. The estimate (1.2) leads to analogous results for piecewise
polynomial approximation. For example (see Brudnyi [6]), if Q = [0, 1r,
and II denotes the partition of Q into equal cubes of side length r, then for
any f E Lq(Q), there is a function p on Q which is polynomial of degree
~ k - 1 on each of the cubes in II, and is such that

(1.3)

In (1.3) C again depends only on k and n, and the norm and modulus are
evaluated in Lq(Q).

In fact, the literature contains a long tradition of approximation
theoretic results like (1.2) and (1.3). A good review of a variety of results
for the univariate case is given by De Vore [8], while spline approximation
of multivariate functions has been developed by de Boor and Fix [2],
Dahmen, De Vore, and Scherer [7], Munteanu and Schumaker [15], as
well as in the aforementioned papers by Brudnyi [5,6]. The developments
of this paper show how estimates like those in the literature may be quan
tified for a large class of given functions f

The main results of the paper are proved in Section 3. In Section 2 we
introduce the modulus of smoothness and briefly review its properties. We
also introduce in Section 2 a certain class of Banach function spaces-the
Nikol'skii spaces-which are characterised by the behaviour of the moduli
of smoothness of their members. The properties of these spaces are used in
the development of Section 3. In Section 4 we calculate numerically the
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I/q

11111 r,q = L: IIDP/II ~ ,
O,,;;IPI ,,;;r

moduli of smoothness of some typical functions. The results show that, up
to machine accuracy, the estimates of Section 3 are, in general, sharp.

In the literature some attention has been given to the practical
calculation of the modulus of smoothness. Brenner, Thomee, and Wahlbin
[4] give two examples of typical elements of univariate Besov spaces. Since
the Nikol'skii spaces discussed in Section 2 are particular cases of Besov
spaces, the examples in [4] can be viewed as statements about the moduli
of smoothness of certain functions. In Trebels [19] (and in the references
given there), results are obtained on the modulus of smoothness of
functions whose Fourier transforms are known.

Estimates of the type proved in this paper have been used in [10, 11] to
obtain convergence results for the solution of one~ and two~dimensional

integral equations using spline bases.

2. MODULUS OF SMOOTHNESS AND PROPERTIES

The best surveys of properties of the modulus of smoothness are to be
found in [12, 13, 16, 18]. We shall briefly summarise the important proper~
ties using the notation of [13].

Let N denote the positive integers and let No =Nu {O}. Throughout the
paper Q will denote a bounded domain in jRn. Thus when n = 1, Q is simply
an open interval. We shall set

D= sup Ix- YI
X.yEa

(i.e., D is the diameter of Q), Some of the results of this paper will require
additional conditions on Q; these will be stated when they are required. Let
() denote the zero vector in jRn.

We denote by C(Q) the set of all functions which are defined and con·
tinuous on Q. We let Lq(Q) (1::::; q::::; ct) denote the usual Lebesgue space
on Q, and let C(Q) denote the space of functions which are bounded and
uniformly continuous on Q. We note that LiQ ) and C(D) are Banach
spaces and we denote their norms by II' II q,U and 11'11 oo.U, respectively, or
just 11'11 q and 11'1100, if Q is understood. For the multiindex
P=(PI' P2'"'' Pn) E [R.n, of degree IPI =PI + P2 + ... + Pn, we use DP to
denote the differential operator (%xdP, ... (%xn)P., all derivatives being
in the distributional sense [1]. Let r EN, 1::::; q ::::; ct). We define W;(Q) to
be the (Sobolev) space of all functions I such that DP/ELq(Q), for all
0::::; IPI ::::; r, and C'(Q) to be the space of all functions I with the property
that DPI E C(Q), for all 0::::; IPI ::::; r. Then W;(Q) is a Banach space under
the norm
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and C(Q) is a Banach space under the norm

1I/IIr,,,, = max IID"/II""
0.; IPI.; r

(see [1, pp.9, 44-45]).
For rE No, 1~q~ 00, we then define (see [13]) H~(Q) as follows.

~(Q) = LiQ ),

H~(Q) = W~(Q),

For any hE IRn
, we define

1~q< 00,

1~q< 00,

~(Q)=C(Q),

H'oo(Q) = C(Q).

Then, for functions defined on Q and kE No, we can define, for tE Qkh' the
kth order forward difference of I

A~/(t)= r~o (-I)k-
r
C)/(t+rh).

(Note that when k= 1 we have just Ahf(t)=/(t+h)- I(t).) For
1~ q~ 00, kENo, the kth order modulus of smoothness is then a function

given by

Wk{f,t)q= sup IIA~/llq..Qkh'

0< Ihl.;'

Among the properties of the modulus of smoothness, we then have the
following.

(i) For fixed IE~(Q), kE N, 1~q~ 00, Wk(f, T)q is a nondecreas
ing function of 1: satisfying

as T -+ 0,

for any kE N.

(ii) For-fixed T>O, kENo, we have

Wk(fl + 12' T)q~Wk(fl>T)q+Wk(f2, T)q,

for all Il,f2E~(Q).

(iii) For fixed IE l!?t(Q), T > 0, kE No, we have

O~j~k. (2.1 )
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(iv) For kE N, fEH{(Q) with 1~j~k, and r>O, we have

. P
wk(f,r)q~CrJ sup wk_)D'f,r)q

IPI=j

99

(2.2)

with C independent of r.
Throughout this paper, we shall have occasion to use statements of the

form

f( r) = O(¢J(r»,

where f( r) and ¢J(r) are nonnegative functions of r > O. This will always
mean that there exists a constant C (independent of r), such that

f( r) ~ C¢J(r), r > O.

Now, for 0:>0 and 1~q~ 00, we introduce (see [16, p.159]) the
Nikol'skii space N:(Q). Let r,pEN o be such that r>a.-p>O. We call
(r,p) an admissible pair for IX. Then, by definition, fEN:(Q) if fELiQ),
and there exists a constant M such that

IILJrDfJ'fll ~Mlhla.-ph q,Q,h'" , (2.3)

for all multi-indices Pwith IPI = p, and all hE IRn. Then N:(Q) is a Banach
space under the norm

with the seminorm IfIa..q given by

Ifla..q = inf M,

where M is the constant appearing in (2.3), and the infimum is taken over
all values of M for which (2.3) is satisfied.

It is not hard to see that the elements of N:(Q) are characterised by the
behaviour of their moduli of smoothness. In fact f E N:(Q) if and only if

(2.4)

for all IPI = p, where (r, p) is any admissible pair for a.
To clarify the defmition of N:(Q) further, we look at the simplest exam

ple of an admissible pair for 0(. If we let [0(] E No, and 0 < 0(0 ~ 1 be such
that

(2.5)



100 IVAN G. GRAHAM

then if 0 < lXo < 1 (1, [IX]) is an admissible pair, whereas if lXo = 1, (2, [IX]) is
an admissible pair. This leads to the observation that f E N~(.Q) if and only
if

OJI(DPf, r)q = O(r<XO),

OJ2(DPf, r)q = O(r),

IPI = [IX], 0 < lXo< 1,

IPI = [IX], lXo = 1.

The definition of 11·11 <x,q given above depends on the choice of admissible
pair. However it is shown by Nikol'skii in [16] that norms springing from
distinct admissible pairs are pairwise equivalent provided the condition (i)
of the following theorem in satisfied. We shall always assume that con
dition (i) is satisfied when we use N~(.Q).

THEOREM (Nikol'skii's imbedding theorem). (i) Suppose the boundary
r of.Q has the following property. For any Xo E r there exists a rectangular
coordinate system (~I"OO' ~n) with origin at X o and a cube

such that ,1 n r may be described by an equation

for

AE ,1' := {(~I"oo, ~n-I): I~jl < 'lj' j= 1'00" n -I},

where t/J satisfies the Lipschitz condition

and C is independent of AI' A2'
(ii) Let 1~p~q~ 00 and p=lX-n(l/p-l/q»O.

Then we have the continuous imbedding

(2.6)

Proof For a proof the reader is directed to [16, pp.236-237, 381].
The nice thing about (2.6) is that, given a function in a certain L p 

Nikol'skii space, we can, from any q> p calculate very easily which L q

Nikol'skii space that function naturally lies in. When q > p, we have P< IX
and so, in effect, we are obtaining extra integrability at the cost of giving
away some smoothness. The parallel of this process, using (2.4), is that
estimates for the Lp-modulus of smoothness of any function may be used to
infer estimates for the Lq-modulus, for all q > p. This observation is very
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useful in the developments of Section 3, where we estimate the L,-modulus
of a class of functions and then apply the above observations to obtain
results about the Lq-modulus for any q> 1, without any further painful
calculations.

We are now ready for the main results of this paper.

3. THE MAIN RESULTS

The main results depend on a technical lemma (Lemma 1) which is
stated and proved below.

From now on, let A = {a l , ... , am} be a fixed subset of D. For tED, we
define the function

O"A(t) = min It-aJ
}= I, ...,m

Thus 0" A(t) is the distance of t from A.
For any f> > 0 and t e IR", the open ball centred on t with radius f> will be

denoted by B(t, f». The set Uj= I B(aj , f» will be denoted by B(A, f».
Throughout the remainder of this paper, C will denote a generic positive
constant which may depend on various quantities at various times, but will
never depend on h or r.

LEMMA 1. Let he IR n
, and let fEL,(D).

(i) Suppose that for Iii = 1, Dif e C(D\A). Then

IIL1hfll".Qh ~ C[llflll,.QnB(A,2Ih,l + Ihl L f IID'l'II".Q\B(A,..l,hl) dA],
Iii = I 0

provided the second term on the right-hand side is a convergent repeated
integral.

(ii) Suppose the conditions of (i) are satisfied for Iii =2 also. Then

II L1 UII".Q2h ~ C [llflll,.QnB(A,4Ihll

+ Ihl
2 li~2 fa' fa' IID'l'II".Q\B(A,(..l+l'llhl) dj1 dAJ

provided the second term on the right-hand side is a convergent repeated
integral.

Proof (i) Observe first that

IILfhfll".Qh = 11.1 hfll"Dhn B(A,lhl) + 11.1 hfll"Dh\B(A,lhll' (3.1)
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Now, on use of the inequality

ILfh!(t)1 ~ If(t+h)1 + If(t)l,

it follows easily that

11.1hflll.f.lhnB(A.lhl) ~ 2I1flll.f.lnB(A.21h1l·

Also,

IILfhflll.f.lh\B(A,lhll = f Irt :1 f(t + Ah) dAIdt
f.lh\B(A.lhll JO VA

(3.2)

~ Ihl L f rIDif(t + Ah)1 dA dt. (3.3)
lil=l f.lh\B(A,lhll 0

We then use Fubini's theorem to reverse the order of integration in (3.3).
The observation that {t + Ah: t E Qh\B(A, lhl)} ~Q\B(A, (1 - A) Ihl) for all
AE (0, 1) then yields

lI Lfhflll.Dh\B(·A.lhl) ~ Ihl L rf IDif(t)1 dt dA
Iii = 1 0 f.I\B(A,(l- Allhl)

= Ihl L rf IDif(t)Idt dA, (3.4)
Iii ~ 1 0 f.I\B(A,Alhll

where the final inequality arises simply from the change of variable
A' = 1-l Substitution of (3.2) and (3.4) in (3.1) yields the required result.

(ii) The proof is analogous to (i). Note first that

IILfUII1,f.l2h = IILfUII1.f.l2hnB(A.2Ihl) + IILf~fIl1,D2h\B(A,2Ihll' (3.5)

Then (cf. (3.2))

(3.6)

Since D commutes with .1, two successive applications of the technique
used to prove (3.3) will yield

IILfUII1,o2h\B(A,2Ihll

~ Ihl L f· rIAhDif(t+ Ah)1 dl dt
Iii = 1 f.l2h\B(A,2Ihl) 0

~ Ihl 2 L f rr IDif(t+A.h+~h)1 d~dAdt. (3.7)
Iii ~ 2 02h\B(A,2Ihl) 0 0
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Then, using Fubini's theorem and the observation that

{t +Ah +Jlh: tEQ2h\B(A, 2Ihl)} £Q\B(A, (2 - A- Jl) Ihl),

for all (A,Jl)E(O, l)x(O, 1), we obtain from (3.7),

IILlUI11,02h\B(A,2Ihl)

103

Using the changes of variable).,' = (1- A), Il' = (1- Il) and substituting,
along with (3.6) in (3.5) yields the result

As we shall see in Lemma 2, the results of Lemma 1 allow us to estimate
readily the modulus of smoothness of certain classes of functions. The
approach used here is adapted from a method of Kantorovich and Akilov
[14, pp.362-365] (which was later used by Pitkiiranta [17] and the
author [9]) to attack a rather different problem, namely the analysis of
multidimensional singular integrals.

We shall be concerned mainly with the following class of functions.

DEFINITION. For J1. EIR, lEN, we say that I: Q -t iC is in the class K(J1., I)
if for Iii = 0,..., I, DilE C(Q\A) and

tEQ\A,

with C independent of i and t. When J1. > 0 we also assume that IE C[I'](Q).

Classes of functions similar to the above class have been considered by
other authors (e.g., de Boor and Rice [3]).

We remark that if IE K(J1., I) and IPI = 0,..., I, we then have
DP/EK(J1.-IPI, I-IPI). Also, if fEK(J1., I) and if O~J~1 can be chosen
with r < J1. +n, then it follows that I E H~(Q).

Examples of typical functions in K(J1., I) are easily identified. Consider the
simple case when A = {e} c Q. Then the function IW is in K(J1., I) for all
lEN, J1. E lit Perhaps a more illuminating example when Jl = °is the
function ttlltl (where ti is the ith component of the vector t), which is in
K(O, I) for all lEN. For n = 1 the function IW/(Jnl tl ) is in K(J1., I) for all
lEN, J1.ER

LEMMA 2. (i) Let O<~~ 1, and let fEK(~-n, 1). Then

(O<~< 1),
(~= 1).
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(ii) Let 1 E K(I- n, 2). Then

W2(J, .)1 = 0(.).

Proof Let hE IR n with Ihl ~ D = diameter of Q. (Note that if Ihl > D,
then Qh= 0 = Q2h, and IIL1 hIll.oh and IIL1UII .o2h will J:>e just zero.) We have

11/111,.onB(A,2IhIJ = f f I/(t)1 dt,
j~ I .oj

where, for J=I,...,m, Qj={tEQnB(A,2Ihl): O"A(t)=lt-ajl}. Then
Qj£B(aj , 2Ihl). (To see this, let tEQj' Then tEB(a;, 21hl) for some
i= 1,..., m, and O"A(t) = It-a). Hence It-a) ~ It-a;1 <2Ihl, yielding
t EB(aj , 2 Ihl).) Thus it follows that

1l/lll,.onB(A,2lhll ~ C f f. It - aX- ndt. (3.8)
j = I B(a),2I h l J

Also, if 1il = 1,

IID'l'III,.o\B(A,,llhl) ~ C f fit - ajl ~ - n- I dt,
j= I Aj

where, for J = 1,..., m, Aj = {t EQ\B(A, AIhl): 0" At) = It - ajl}. Clearly
Aj £ Q\B(aj , A Ihl), and so

IIDi/lll,.o\B(A,'\lhl)~C f f It-a)~-n-Idt. (3.9)
j = I D\B(aj,,\lhl)

Using spherical polar coordinates with origin Qj in (3.8) and (3.9), we
obtain

and

f.
2 1h l

1I/III,.onB(A,2Ihl) ~ C 0 r~-I dr ~ C Ihl~,

II D'l'III,.o\B(A,,\lhIJ ~ C fD r~ - 2dr.
. ,\Ihl

(3.10)

(3.11 )

Integrating with respect to r in (3.11), and then again with respect to A, we
obtain

fl . {C Ihl~
Ihl li~ 1 0 IID'/III,.o\B(A,,\lhll dA ~ C Ihl lin Ihll

(0( # 1),

(0( = 1).
(3.12)
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Combination of (3.10) and (3.12) in the estimate of Lemma l(i) yields the
required result.

The proof of (ii) uses Lemma l(ii) and follows similar lines to the proof
of (i).

Remark 1. Let n = 1, Q =(-1,1) and consider the function
f(t) = In Itl. (Thus A = {e}, in this case.) Then it can be shown (see below
for details) that

(3.13)

and

(3.14)

Looking at this example and the results of Lemma 2 in the case (X = 1 we
see that the class of functions for which (3.14) is satisfied is, in a sense,
more natural than the class for which

(i)1(f, r)1 = O( r).

Further evidence for this assertion can be found in [20], where the class of
functions satisfying (3.14) is studied.

The proof of (3.13) is straightforward: Arguments analogous to those
which obtained (3.10) and (3.12) give

IIflll,,Qr>B(9.2Ihl) 1
1 =O(lhllln Ihll),

Ihl LII!'11,Q\B(9.1Ihl) dA

and (3.13) follows from Lemma l(i).
To prove (3.14), we note first that calculation analogous to the above

will yield

Ilflll.,Qr>B(O,4IhIJ = O(lhllln Ihll)

and

Hence we cannot use Lemma l(ii) directly to obtain (3.14). Instead, we use
the sharper estimate

IIAiflll.,Q2h ~ IIj~flll.o2hr>B(o.2Ihl)

+ Ihl 2 IIrII!" III,,Q\B(O.(H I'Jlhl) dp, d)',
o 0
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which follows from (3.5). As observed above, the second term on the right
hand side is O(lhl). Also, it can be shown by elementary calculations that
the first term is O( Ihl) also, and so (3.14) follows.

Remark 2. The arguments of Lemma 2 may be extended to treat more
general types of singularities. For example, consider the case when kENo,
lEN, 0 < IX ~ 1, and f satisfies, for Iii:::: 0, 1,..., I,

Then if (3.15) is satisfied for 1=1, arguments analogous to Lemma 2(i)
show that

(0 < IX < 1),

(IX = 1),

whereas arguments analogous to Lemma 2(ii) show that if IX = 1 and (3.15)
is satisfied for 1= 2, then

Recall now the notation (2.5).

THEOREM 3. (i) Let IX> 0, and let f E K(IX - n, [IX] + 1). Then if kEN,

k < IX,

k > IX If N,

k ~ a EN.

(ii) Let a EN, and let f E K(a - n, [a] + 2). Then if kEN,

\

O('l:k), k < IX,

wk(f, '1:)1 = O( '1:'" lIn '1:1), k = a,

0('1:"'), k> a.

Proof First, note (see the discussion following the definition of K(p., I))
that, under the conditions of either (i) or (ii), we have f E Hf"J(Q). Hence
for k < a, we have k ~ [a] and so use of (2.2) yields

Wk(f, '1:)1 = O('l:k
),

proving the first estimate for each of (i) and (ii). We now prove the remain
ing estimates.
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(i) When kEN and k> a ¢ N or k ~ a EN, it follows easily that
k ~ [a] + 1. Hence (2.1), (2.2), and Lemma 2(i) yield

{
o(r~)

= O(r~ lIn rl)

(k > a¢ N),

(k~aEN),

(k> a ¢N),

(k ~ a EN).

The second inequality follows from Lemma 2(i), since DfJf E K( a.o - n, 1) for
IPI = [a], and ao < 1 when a ¢ N, whilst a.o = 1 when a. EN.

(ii) Since K(a.-n, [a.] +2):::;K(a.-n, [a.] + 1), the second estimate of
(ii) has already been proved in (i). For the third estimate, let k>rxE N, we
have k ~ [a.] + 2 and so (2.1), (2.2), and Lemma 2(ii) yield

(J)k(f, r),:::; Cr[~] sup (J)2(DfJf, r)1
IfJl = [~]

:::; Cr[~]r

= O(r~).

Again, the seond inequality follows from Lemma 2(ii) since
DPfEK(1-n, 2), for IPI = [a.].

In the following corollary, the results of Theorem 3 are used to obtain
typical elements of the L,-Nikol'skii spaces introduced in Section 2.
Assume from now on that condition (i) of Nikol'skii's imbedding theorem
is satisfied.

COROLLARY 4. Let a. > O. If either

or

fEK(a.-n, [a.]+l)

f E K( a. - n, [a.] + 2)

(a.¢N)

(a. EN),

then f E NNQ).

Proof Let kEN with k > a.. Then Theorem 3 implies that

Since (k, 0) is an admissible pair for a., it follows that f E Nf(Q).
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The final result of this section uses Nikol'skii's imbedding theorem and
the results that we have already obtained above to calculate the modulus of
smoothness of certain classes of functions with respect to a general L q

norm.

THEOREM 5. Let tX > 0, 1~ q ~ 00 and suppose f E K(tX - n/q,
[tX - n/q +n] +2). Suppose also that hypothesis (i) of Nikofskits imbedding
theorem is satisfied. Then for kEN we have

k > tX,

k < tX.

Remark. When k = tX various possibilities exist, including the generation
of logarithmic terms. We omit these for simplicity.

Proof Since

f E K( (tX - n/q +n) - n, [tX - n/q +n] +2),

and since

tX -n/q +n ~ tX > 0,

it follows by Corollary 4 that f E N/(Q), with '1 = tX - n/q + n. Now, since

o<tX=(tX-n/q+n)-n(l-l/q),

it follows by Nikol'skii's imbedding theorem that f E N~(Q). The first
estimate follows since if k> tX, then (k, 0) is an admissible pair for tX.

Now let kEN, k < tX. Then

DPfEK(tX-k-n/q, [tX-k-n/q+n] +2),

for all IPI =k. Since when 1~ q < 00, we have

(tX-k-n/q)q=(tX-k)q-n> -n,

it follows that DPf E Lq(Q) and hence that f E W~(Q). When q = 00, we
have

tX - k - n/q = tX - k > 0,

and so DPf E C(Q). Hence f E Ck(Q). Thus overall f E H~(Q), and the
second estimate follows from (2.2).

An example of a function satisfying the conditions of Theorem 5, and for
which the order of the modulus of smoothness is well known, is the Bessel
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potential kernel [19]. In turns out that the order of the modulus of
smoothness of this function is exactly as predicted in Theorem 5. Further
evidence of the sharpness of the estimates given here is provided in the next
section.

4. NUMERICAL ILLUSTRATIONS

EXAMPLE 1. Let f(t) = t3
/
4

, for t E (0, 1). Then it is easy to show that
f EKG, I) for alII EN, where in this case A = {O}. Writing ~ = IY. -l/q, and
calculating IY., Theorem 5 then predicts that

(4.1 )

where p is given for various values of k and q in Table I. The entry 1* in
Table I indicates that Theorem 5 actually predicts that

for all p < 1.

The quantities Wk(J, r)q were approximated six times using r; = O' 2/2;, for
i = 4, 5, 6, 7, 8. 9. and the number p estimated five times (one estimate for
each pair of consecutive values of r) using the formula

(4.2)

for i = 4,...• 8. The five values of p thus obtained for each k and q are shown
in order of increasing i in Table II. The figures are rounded to the given
number of significant figures.

EXAMPLE 2. Let f(t) = It 11/2. t E (0.1) x (0.1). Then f E K(!. I). for all
lEN. where A = {(O. O)}. Writing! = IY. - 2/q and calculating IY., Theorem 5
then predicts that (4.1) holds where p is given for various values of k and q
in Table III. In this case the quantities wk(J, r)q were approximated five

TABLE I

q

k 1 2 3 4

1 1 1 1 1*
2 7 5 H 1:4 4

640/44/2-2



110 IVAN G. GRAHAM

TABLE II

q

k 1 2 3 4

1 0·983784 0·981703 0·971601 0'954824
0'990768 0·987579 0·977512 0'959944
0'994699 0·991465 0·981948 0·963990
0·996938 0·994084 O' 985365 0·967279
O' 998222 0·995876 0·988047 0'970010

2 1· 64366 1·24952 1·08333 1·00000
1· 66674 1·24983 1·08333 1·00000
1 ·68371 1· 24994 1·08333 1·00000
1· 69660 1· 24998 1·08333 1·00000
1· 70660 1· 24999 1·08333 1·00000

times using r i =o· 2/2 i
, for i =4, 5, 6, 7, 8, and the number p estimated four

times (one estimate for each pair of consecutive values of r) using (4.2), for
i = 4,..., 7. The four values of p thus obtained for each k and q are given in
Table IV. The last two values of p for k = 2, q = 3 were contaminated by
rounding error. Note that in this case, since we are working in two dimen
sions, we have

(J)k(f, r)q= sup 11L1~Illq.Qkh'
0< Ihl,.,;,

where the supremum is taken over all hE [R2 with 0 < Ihl ~ r. In this case
the singularity at I occurs at the bottom left-hand corner of
Q= [0,1] x [0,1] (i.e., at the point (0,0)). Thus, since we would expect
the behaviour of (J)k(f, r)q to be dominated by the quantity 11L1~ III Dkh when
Qkh actually contains the singularity of f, we have restricted attention to the
case when hE {(x, y) E [R2: x ~ 0, y ~ O}. As well, since the domain is sym
metrical about x = y, we have confined attention to the case when
hE {(x, y) E[R2: x ~ 0, y ~ 0, x ~ y}. Accordingly, we have estimated

TABLE III

q

k 1 2 3

1 1 1 1
2 2 ~

7
7;
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TABLE IV

q

k 1 3 3

1 0·987358 0·990803 0·982312
0·993682 0·995062 0·987668
0·996840 0·997353 0·991600
0·998419 0·998589 0·994727

2 1·89152 1·48901 1'17189
1·92568 1· 49454 1·16200
1·94857 1·49792 1·84339
1·96419 1·49832 -

111

Wk(f, 1")q by calculating IIAZfllq.Dkh for each h in the "fan"
{(x, y): x = 1" cos(jn/20), y = r sin(jn/20 ), j = 0,..., 5}, and then taking the
supremum over these six values of h.

All numerical calculations were done in double precision on the
VAX VMS 11/780 at the University of Melbourne. The numerical
integrations necessary for calculation of the moduli of smoothness were
done using adaptive integration packages from the IMSL library. We used
DCADRE for the one-dimensional case (Example 1) and DBLINT for the
two-dimensional case (Example 2).
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